Measurement of Double Helicity Asymmetry in Multi-particle Productions at PHENIX

SPIN2006 Oct. 3, 2006

Kenichi Nakano (Tokyo Tech, RIKEN) for the PHENIX Collaboration

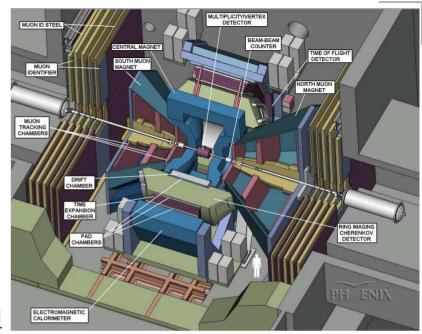
Contents

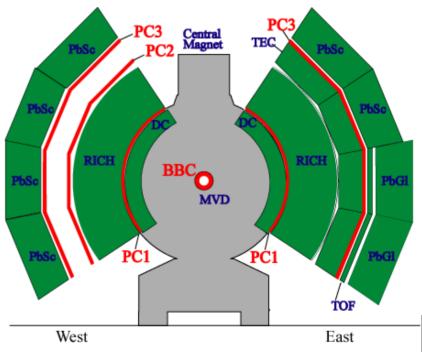
- Introduction
- Experimental setup
- Methods of multi-particle measurement
- Results
 - yield of particle cluster per luminosity
 - double helicity asymmetry (A_{LL})
- Conclusion

Introduction

Nucleon spin problem (EMC 1988), gluon polarization in the proton Δg

$$rac{1}{2}_{ ext{proton}} = rac{1}{2} \sum_{q} \Delta q + rac{oldsymbol{\Delta} oldsymbol{g}}{q} + L_{q,g}$$

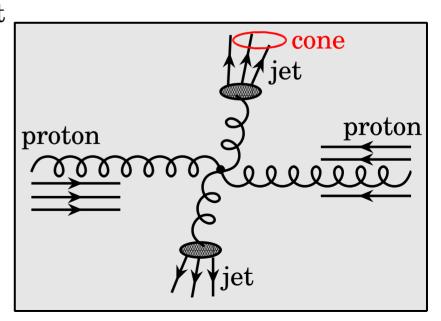

- \blacksquare reactions accessible to $\triangle g$ in p+p collision ... jet, inclusive π^0 , direct γ , etc.
- **D**ouble helicity asymmetry (A_{LL}) in jet production


$$A_{LL} \equiv rac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = rac{1}{P_B P_Y} rac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}} \;\; , \quad R \equiv rac{L_{++}}{L_{+-}}$$

- lacksquare A_{LL} has information on Δg
 - $\blacksquare g+g$ and q+g reactions are dominant in mid- p_T jet production
 - $\hspace{0.1in} \bullet \hspace{0.1in} \text{for } gg \to gg \hspace{0.1in} \text{reaction}, \hspace{0.1in} A_{LL}^{gg \to gg} = \int dx_1 dx_2 \hspace{0.1in} \frac{\Delta g(x_1)}{g(x_1)} \cdot \frac{\Delta g(x_2)}{g(x_2)} \cdot \hat{a}_{LL}^{gg \to gg}$
- Measurement of multi-particle as a part of jet with PHENIX Central Arm ($\Delta \phi = 90^{\circ} \times 2$, $|\eta| < 0.35$)

Experimental Setup - PHENIX@RHIC

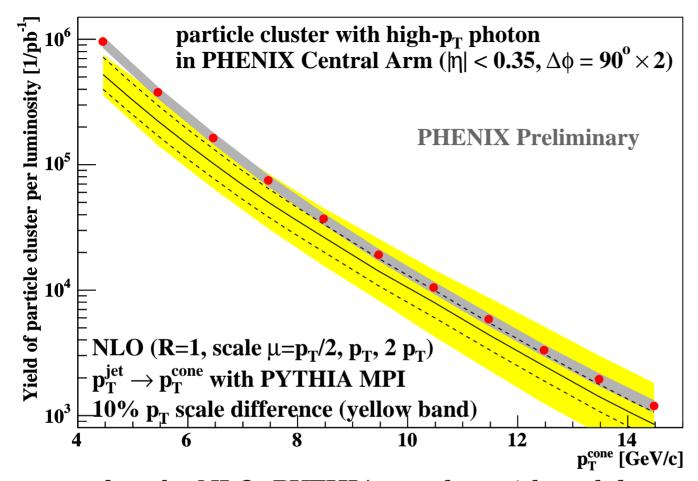
- Longitudinally polarized proton-proton collision at $\sqrt{s} = 200$ GeV at RHIC
 - **Run** 2005, $L = 2.2 \text{ pb}^{-1}$, P = 46%
- PHENIX Central Arms: $\Delta \phi = 90^{\circ} \times 2$, $|\eta| < 0.35$
- Event selection
 - $p_T(\text{photon}) > 2 \text{ GeV/}c \text{ (offline trigger)}$
- Particle selection
 - photon: detected with PbGl & PbSc EMCal
 - $p_T > 0.4 \text{ GeV/}c$
 - elemag shower shape cut
 - veto of charged particle
 - charged particle: detected with Drift Chamber & Pad Chamber 1
 - $ightharpoonup 0.4 < p_{_T} < 4.0 \; {
 m GeV}/c$
 - track quality cut



Methods of Multi-particle Measurement

- Particle clustering with cone
 - photons ($p_T > 0.4~{\rm GeV/}c$) and charged particles ($0.4 < p_T < 4.0~{\rm GeV/}c$) with offline high- p_T (> $2.0~{\rm GeV/}c$) photon trigger
 - make cones by using all particles as seed
 - cone radius $R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3$
 - cone momentum = vector sum of mementa of particles in the cone
 - cone axis = direction of cone momentum (dir. of seed particle at first)
 - iterate above until cone axis becomes stable
 - lacksquare use cone with highest $p_{\scriptscriptstyle T}^{\rm cone}$ in each event

$$p_T^{
m cone} \equiv \left| \sum_{i ext{ in cone}} ec{p}_{Ti}
ight|$$

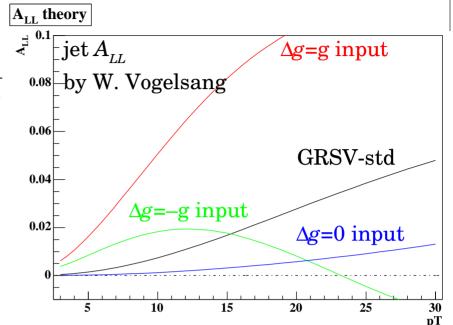

Results - Yield of Particle Cluster per Lumi.

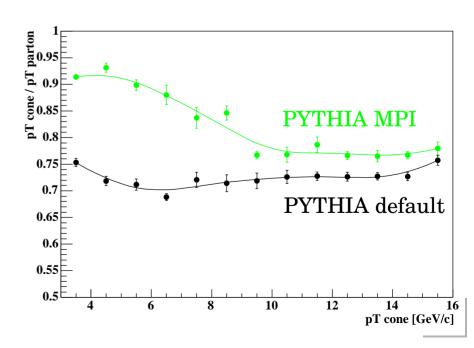
- Purpose: evaluate p_T scale uncertainty on A_{LL} measurement
 - $\ \ \, \ \ \,$ originate from the difference in $p_{\scriptscriptstyle T}$ definition between measurement and theory calculation
 - normally there exists >10% p_T scale uncertainty (one reason: change in theoretical cone size causes ~10% p_T variation)
 - confirm this uncertainty by evaluating a kind of cross section
- Real data

$$\mathcal{Y}^{icone} \equiv rac{C_{ ext{corr}}}{f_{ ext{BBC}}} \cdot rac{N_{ ext{cone+ph}}^{icone}}{L}$$

- \blacksquare $C_{\rm corr}$ / $f_{\rm BBC}$... correction factor for the yield loss due to trigger efficiencies (high- $p_{\scriptscriptstyle T}$ photon trigger & BBC trigger)
- $ightharpoonup N_{\text{cone+ph}} \dots \text{ yield of cone+high-} p_T \text{-photon events}$
- \blacksquare L ... luminosity (2.2 pb⁻¹)
- Jet cross section by NLO theory calculation was converted into y^{icone} by using PYTHIA MPI (Multi-Parton Interaction tune) and GEANT simulations

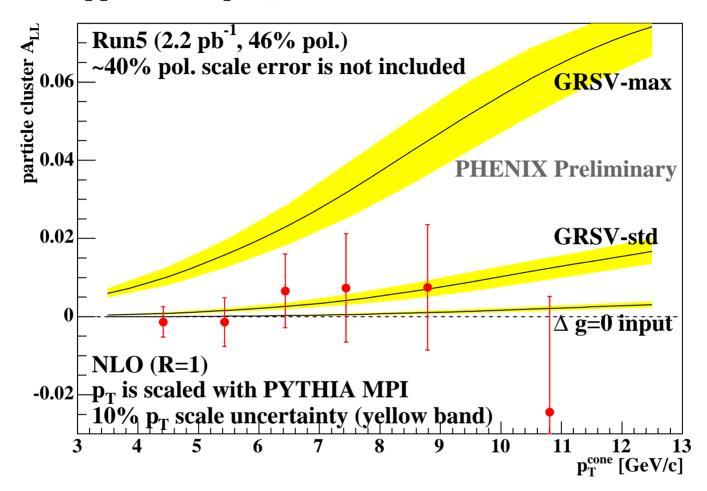
Results - Yield of Particle Cluster per Lumi.


main systematic errors	
on real data	
luminosity	10%
EMCal ene. scale	5~6%
track mom. scale	0~3%

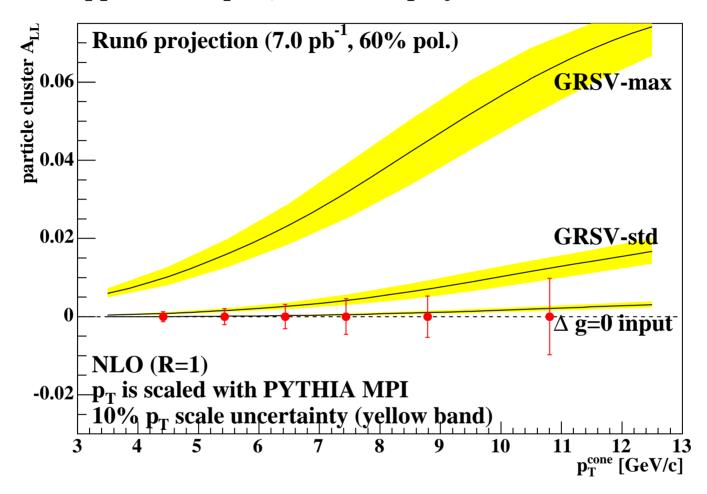

- slope by NLO+PYTHIA matches with real data over 3 orders of magnitude
- $10\% p_T$ scale difference makes ~50% variation on yield
 - this variation covers the distance between real data and NLO+PYTHIA
- $ightharpoonup 10\% \ p_{\scriptscriptstyle T}$ scale uncertainty was assigned to $A_{\scriptscriptstyle LL}$ curve

Results – Multi-particle A_{LL}

$$A_{LL} \equiv rac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = rac{1}{P_B P_Y} rac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}} \;\; , \quad R \equiv rac{L_{++}}{L_{+-}}$$


- Theory predictions
 - in PHENIX Central Arm acceptance ($|\eta|$ < 0.35)
 - the ratio $p_T^{\text{cone}}/p_T^{\text{jet}}$ was evaluated with PYTHIA MPI + GEANT simulations
 - $p_T^{
 m jet}$ in theory calculation was scaled to $p_T^{
 m cone}$ by ratios estimated with PYTHIA+GEANT

Results – Multi-particle A_{LL}


PHENIX Run5pp ($L = 2.2 \text{ pb}^{-1}, P = 46\%$) result

- GRSV-max was excluded (zero C.L.) with this result
- GRSV-std and Δg =0 input have a similar C.L.

Results – Multi-particle A_{LL}

■ PHENIX Run6pp ($L = 7.0 \text{ pb}^{-1}$, P = 60%) projection

statistical error will reach the size of GRSV-std

Conclusion

- Nucleon spin problem (EMC 1988), gluon polarization in the proton Δg
- Longitudinally polarized proton-proton collisions at $\sqrt{s} = 200$ GeV at RHIC
 - Run 2005, $L = 2.2 \text{ pb}^{-1}$, P = 46%
- Multi-particle measurement as a part of jet with PHENIX Central Arm
 - ullet photons and charged particles with high- $p_{\scriptscriptstyle T}$ photon
 - particle clustering with cone method
- Multi-particle A_{LL} has been measured
 - $ightharpoonup 10\% p_{\scriptscriptstyle T}$ scale uncertainty
 - theory predictions scaled from p_T^{jet} to p_T^{cone} with PYTHIA MPI
 - GRSV-max was excluded, GRSV-std and Δg =0 input have a similar C.L.
 - statistical error with Run6 data will reach the size of GRSV-std

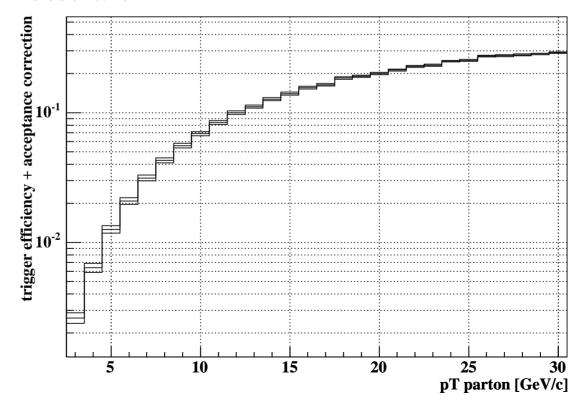
Yield of Particle Cluster per Lumi.

Real data

$$\mathcal{Y}^{icone} \equiv rac{C_{ ext{corr}}}{f_{ ext{BBC}}} \cdot rac{N_{ ext{cone+ph}}^{icone}}{L}$$

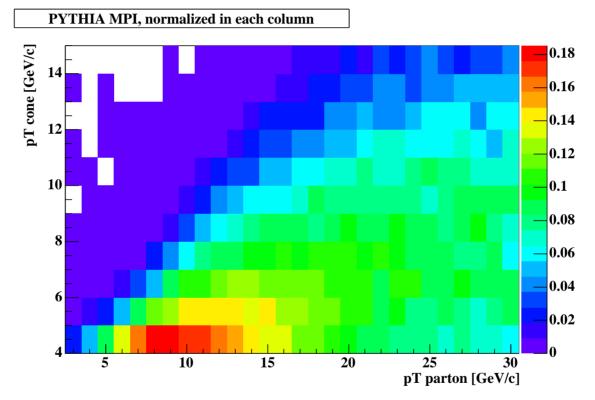
- $C_{\text{corr}}/f_{\text{BBC}}$... correction factor for the yield loss due to trigger efficiencies (high- $p_{\scriptscriptstyle T}$ photon trigger & BBC trigger)
- $\qquad \qquad N_{\text{\tiny cone+ph}} \ldots \text{ yield of cone+high-} \\ p_{\scriptscriptstyle T}\text{-photon events}$
- \blacksquare L ... luminosity (2.2 pb⁻¹)
- NLO theory + PYTHIA

$$\mathcal{Y}^{icone} = \sum_{ijet} f^{icone}_{ijet} \cdot \epsilon^{ijet}_{ ext{trig}+ ext{acc}} \cdot N^{ijet}_{ ext{theo}}$$


- PYTHIA with Multi-Parton Interaction (MPI) tune
 - PYTHIA MPI agrees with real data in terms of event shape (thrust in PHENIX Central Arm, particle multiplicity, and p_{τ} density in $\Delta \phi$)
- $\blacksquare \ N_{\rm theo}{}^{\it ijet} \ldots$ jet yield per luminosity calculated from NLO jet cross section
- \bullet $\epsilon_{trig+acc}^{ijet}$... the prob. that a trigger photon exists + jet acceptance corr.
- $lacksymbol{\bullet} f_{ijet}^{icone}$... the prob. that an event with p_T^{jet} in ijet bin makes p_T^{cone} in icone bin

Yield of Particle Cluster per Lumi.

 $\epsilon_{\text{trig+acc}}^{ijet}$ in NLO+PYTHIA calculation ... the prob. that a trigger photon exists + jet acceptance corr.

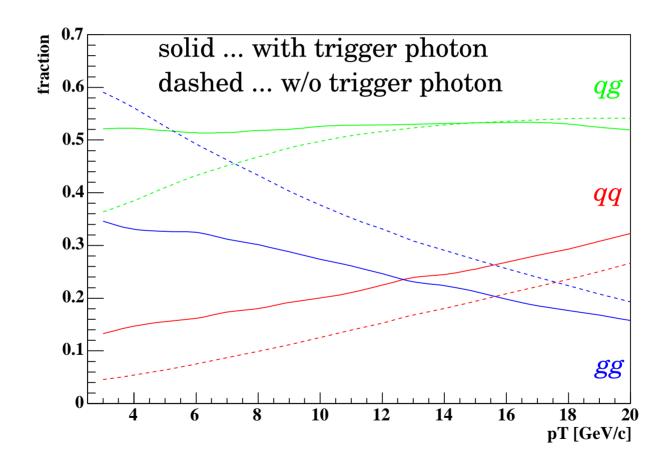

$$\epsilon = rac{p_T^{
m ph} > 2.0 \; \&\& \; \{\eta_{
m ph} \; {
m and} \; \phi_{
m ph} \; {
m in} \; {
m EMCal \; acceptance}\}}{|\eta_{
m jet}| < 0.35}$$

- **E**MCal acceptance ... $\Delta \eta = 0.7$ and $\Delta \phi^{\rm sector} = 0.34$ for PbSc and 0.32 for PbGl (two towers from sector edges were not included)
- it was estimated with PYTHIA MPI

Yield of Particle Cluster per Lumi.

- f_{ijet}^{icone} in NLO+PYTHIA calculation ... the prob. that an event with p_T^{jet} in ijet bin makes p_T^{cone} in icone bin
 - it was estimated with PYTHIA MPI + PISA

this $p_T^{\rm jet}$ -> $p_T^{\rm cone}$ folding used a range of 2.5 < $p_T^{\rm jet}$ < 30.5 GeV/c, where $N_{\rm theo}$ was available. The contributions from the outside of the $p_T^{\rm jet}$ range to each $p_T^{\rm cone}$ bin was not included. According to PYTHIA, it was 6% at the lowest $p_T^{\rm cone}$ bin (from $p_T^{\rm jet}$ < 2.5) and 4% at the highest $p_T^{\rm cone}$ bin (from $p_T^{\rm jet}$ > 30.5).


Simulation Condition

- PYTHIA event generator ... same as Run3 analysis
 - **■** version 6.220

- proton-proton collision at $\sqrt{s} = 200 \text{ GeV}$
- high- p_T QCD process (MSEL=1) CTEQ5L PDF
- $p_T > 1.5 \text{ GeV/}c \text{ (CKIN(3))}$
- two PYTHIA settings
 - "PYTHIA default" ... PYTHIA ver. 6.220 default
 - "PYTHIA MPI" ... Multi-Parton-Interaction-tuned setting
 - Rick Field Tune A ... tuned with CDF Run2 data
 - MPI setting is adopted as default from ver. 6.226
- PISA detector simulator
 - Run5pp settings
 - the event and particle selections same as real data

Trigger Bias for Fraction of Subprocesses

- Trigger bias effect is evaluated with PYTHIA as the modification of subprocess fractions (qq, qg, gg)
 - ullet gg subprocess are suppressed by trigger photon requirement at low $p_{_T}$

